Two Randomized Algorithms

George Voutsadakis (LSSU)

George Voutsadakis?

IMathematics and Computer Science
Lake Superior State University

Seminar Presentation

Two Randomized Algorithms

Sault Sainte Marie, 2022

A Monte Carlo Algorithm for Determinant Identity

The Bipartite Matching Problem

o A bipartite graph G = (U, V, E) consists " v,
of
o two sets of vertices U = {u1,...,un}, u, v
V={_wv,...,wn};
o Aset EC U x V of edges. u; v
o A perfect matching in a bipartite graph G
is a subset M C E, such that, for any two " V4
edges (u,v), (v, V') € M, u+# u and "
5 Vs

v# V.
Equivalently, a perfect matching may be viewed as a permutation 7
of {1,2,...,n}, such that (uj, vy(;y) € E, forall i=1,...,n.

BIPARTITEMATCHING: Given a bipartite graph G = (U, V, E),
does it have a perfect matching?

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 2/17

A Monte Carlo Algorithm for Determinant Identity

Matrices and Determinants

o Given a bipartite graph G, consider the n x n matrix A® whose
(i,)-th element is a variable xj;, if (uj, vj) € E, and zero otherwise.

@ The determinant of AS is defined as

det(A®) = o(m) [[Afriiys
U i=1

o 7 ranges over all permutations of n elements;

o o(m) is 1 if m is composed of an even number of transpositions, and
—1 otherwise.

@ Note the following:

o The only nonzero terms in this sum are those that correspond to
perfect matchings 7.

@ Since all variables appear once, all of these terms are different
monomials, and hence they do not cancel in the end result.

So, G has a perfect matching iff det(A®) is not identically zero.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 3/17

A Monte Carlo Algorithm for Determinant Identity

Gaussian Elimination

@ The simplest and oldest method to compute determinants is Gaussian

elimination.
13 2 13 2] ..., [13 2
17 —2| 255" o4 —4| 72270 4 —4
13 2| Bt g 6 0 00 6

It follows that det(A) =1-4-6 = 24.
@ For numerical matrices, this algorithm runs in polynomial-time.

@ Unfortunately, for symbolic matrices, its worst-case running time
becomes exponential.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 4 /17

A Monte Carlo Algorithm for Determinant Identity

The Symbolic Identity Problem

@ But we are not interested in actually evaluating the symbolic
determinant!
We just need to tell whether it is identically zero or not.

@ So we can pursue the following idea:
o We substitute arbitrary integers for the variables.
o Then we obtain a numerical matrix, whose determinant we can
calculate in polynomial time by Gaussian elimination.
o If this determinant is not zero, then the symbolic determinant cannot

be identically zero!
@ But the numerical determinant may be zero, although the symbolic one

was not.
This happens if we stumble upon one of the roots of the determinant

(seen as a polynomial).

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 5/17

A Monte Carlo Algorithm for Determinant Identity

How Unlucky Can We Be?

Let p(x1,...,%xm) # 0 be a polynomial in m variables each of degree at
most d in it, and let M > 0 be an integer. Then the number of m-tuples

(x1,...,xm) €{0,1,..., M — 1} such that p(xy,...,xm) = 0 is at most
mdM™ 1.

@ The proof is by induction on m, the number of variables.
@ When m =1 the lemma says that no polynomial of degree < d can
have more than d roots.
Suppose the result is true for m — 1 variables.
Write p as a polynomial in x,,, whose coefficients are polynomials in
X1y ooy Xm_1-
Eg.
XfXQ2 + Xfx33 + X12X2X32 + X12X2X3 + X1X22X3 + X1X33
= (6 +x)x5 + (D) + (e +x0d)xs + (63).

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 6 /17

A Monte Carlo Algorithm for Determinant Identity

The Induction Step

@ If this polynomial evaluated at some integer point is zero, then

o either the highest-degree coefficient of x,, in p is zero,...
By induction this can occur for at most (m — 1)dM™=2 values of

X1yeees Xm—1-
For each such value, p will be zero for at most M values of x,.
Hence, for at most (m — 1)dM™~1 values of xi, ..., Xn.

o ... oritis not.
We have a polynomial of degree < d in x,, which can have at most d
roots for each combination of values of xi,...,xn_1.
So we get at most dM™ ! new roots of p.

Adding these, we upper bound the total number of roots of p:

m—1)dM™ 1 + dM™ "t = mdM™ L.
()

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 7/17

A Monte Carlo Algorithm for Determinant Identity

A Monte Carlo Algorithm

@ The Lemma alllows the following randomized algorithm for deciding if
a graph G has a perfect matching.

We denote by A®(xq, ..., xm) the matrix A® with its m variables.
det(A®(xq,...,xm)) has degree at most one in each of the variables.
Choose m random integers i1, ..., in between 0 and M =2m — 1.

Compute the determinant det(A¢ (i, ..., in)) by Gaussian elimination.
If det(A® (i, ..., im)) # 0 then “G has a perfect matching”;
If det(A€ (i1, ...,im)) = 0 then “G probably has no perfect matching”.
This is a polynomial Monte Carlo algorithm:
o If the algorithm finds that a matching exists, its decision is reliable.
o But if the algorithm answers “probably no matching”, then there is a
possibility of a false negative.

If G has a matching, the probability of a false negative answer is

m(2m)™~1 m 1

emm 2m 2

e ¢

(4

(4

P(hitting a 0) <

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 8 /17

A Monte Carlo Algorithm for Determinant Identity

Amplification

@ By taking M much larger than md we could reduce the probability of
a false negative answer as much as desired (at the expense of
applying Gaussian elimination to a matrix with larger numbers).

@ However, there is a much more widely applicable (and more
appealing) way of reducing the chance of false negative answers:

Perform many independent experiments.

@ We repeat k times the evaluation of the determinant of a symbolic
matrix, each time with independently chosen random integer values
for the variables in the range 0,...,2m — 1.

o If the answer always comes out zero, then our confidence on the

outcome that G has no perfect matching is boosted to 1 — (%)k

o If the answer is different from zero even once, then we know that a
perfect matching exists.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 9 /17

A Random Walk Algorithm for Satisfiability

The Satisfiability Problem

o Let xq,...,x, be Boolean variables.

@ A literal is one of xq,...,x, Oor =x1,...,"X,.

@ A clause c is a disjunction ¢ = ¢1 V --- V £, where /; is a literal.

@ A CNF formula is a formula ¢ = /\f":1 ¢i, where ¢; is a clause, say
C,':f,'l\/---\/g,'kl..

@ ¢ is satisfiable if there exists an assignment 7 : {xq,...,x,} — {0,1}

of Boolean values to its variables, such that 7(¢) = 1.

SAT: Given a CNF formula ¢, is ¢ satisfiable?

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 10 / 17

A Random Walk Algorithm for Satisfiability

Random Walk Algorithm for Satisfiability

@ Consider the following randomized algorithm for SAT:
Start with any truth assignment 7;
Repeat the following r times:
If there is no unsatisfied clause, reply “formula is satisfiable”;
else
take any unsatisfied clause (all of its literals are false under 7);
Pick any of these literals at random and flip it, updating 7.
Reply “formula is probably unsatisfiable”.

@ We will fix the value of parameter r later.

@ We call this the random walk algorithm.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 11 /17

A Random Walk Algorithm for Satisfiability

Performance of the Algorithm

o If the given expression is unsatisfiable, then our algorithm is
“correct”:
It concludes that the expression is “probably unsatisfiable”.

@ But if the expression is satisfiable, we may have a false negative.

@ If we allow exponentially many repetitions we will eventually find a
satisfying assignment with very high probability.

o If r is only allowed to be polynomial in the number of Boolean
variables, there are simple satisfiable instances of 3-SAT (3 literals
allowed per clause) for which the “random walk algorithm” performs
badly.

@ When applied to 2-SAT (2 literals allowed per clause) the random
walk algorithm performs quite decently.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 12 /17

A Random Walk Algorithm for Satisfiability

Performance for 2-SAT

Theorem

Suppose that the random walk algorithm with r = 2n? is applied to any
satisfiable instance of 2-SAT with n variables. Then the probability that a
satisfying truth assignment will be discovered is at least %

@ Let 7 be a truth assignment that satisfies the given 2-SAT instance.
Let t(i) denote the expected number of repetitions of the flipping
step until a satisfying truth assignment is found, assuming that our
starting truth assignment 7 differs from 7 in exactly / values.

We know that t(0) = 0.

Also we need not flip when we are at another satisfying assignment.
Otherwise, we must flip at least once.

When we flip, we choose among the two literals of a clause.

At least one of these two literals is true under 7.

Thus, when flipping, we have at least % chance of moving closer to 7.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 13 /17

A Random Walk Algorithm for Satisfiability

Writing an Inequality

@ For 0 < i < n we can write the inequality:
. 1 .. .
t(i) < E(t(l — D+ t(i+1))+1,

where the added unit stands for the flip just made.
It is an inequality because the situation could be brighter:
o Perhaps the current 7 also satisfies the expression;
o Perhaps it differs from 7 in both literals, not just the guaranteed one.
@ Also t(n) < t(n—1)+1, since at i = n we can only decrease i.
Consider the situation, where the relation holds as an equation.
o This way we give up the occasional chance of stumbling upon another
satisfying truth assignment, or a clause where 7 and 7 differ in both

literals.
@ It is clear that this can only increase the t(i)'s.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 14 /17

A Random Walk Algorithm for Satisfiability

Dealing with an Equation

@ We define the function x(/) to obey
o x(0) =0;
o x(n)=x(n—-1)+1;
o x(i)=4(x(i — 1)+ x(i + 1)) + 1.
The x(i)'s are easy to calculate and x(i) > (i) for all /.
We have a “one-dimensional random walk with a reflecting and an
absorbing barrier” or a “gambler’s ruin against the sheriff”.
o If we add all equations on the x(/)'s together, we get x(1) = 2n — 1;
@ Then solving the x(1)-equation for x(2) we get x(2) = 4n — 4;
o Continuing like this x(i) = 2in — i2.

As expected, the worst starting i is n, with x(n) = n?

We have thus proved that the expected number of repetitions needed
to discover a satisfying truth assignment is t(i) < x(i) < x(n) = n°.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 15 / 17

A Random Walk Algorithm for Satisfiability

Bounding the Probability of Failure

o No matter where we start, our expected number of steps is < n?.
@ The following lemma, with k = 2, completes the proof.

If x is a random variable taking nonnegative integer values, then for any
k>0,

P[X>k-E(X)]<%.

o Let p; be the probability that x = i.

E(x)=Y _ipi= Y ipi+ Y ipi>kE(x)P[x > KkE(x)].
i i<kE(x) i>kE(x)
@ Hence, the random walk algorithm with r = 2n? is a polynomial
Monte Carlo algorithm for 2-SAT:
o There there are no false positives;

o The probability of a false negative is less than 1

5-

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 16 / 17

A Random Walk Algorithm for Satisfiability

Thank you!

@ In closing...

Thank you for your Attention!!

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 17 / 17

	A Monte Carlo Algorithm for Determinant Identity
	A Random Walk Algorithm for Satisfiability

