
Two Randomized Algorithms

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

Seminar Presentation
Lake Superior State University

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 1 / 17

A Monte Carlo Algorithm for Determinant Identity

The Bipartite Matching Problem

A bipartite graph G = (U,V ,E) consists
of

two sets of vertices U = {u1, . . . , un},
V = {v1, . . . , vn};
A set E ⊆ U × V of edges.

A perfect matching in a bipartite graph G

is a subset M ⊆ E , such that, for any two
edges (u, v), (u′, v ′) ∈ M, u 6= u′ and
v 6= v ′.

Equivalently, a perfect matching may be viewed as a permutation π

of {1, 2, . . . , n}, such that (ui , vπ(i)) ∈ E , for all i = 1, . . . , n.

BipartiteMatching: Given a bipartite graph G = (U ,V ,E),
does it have a perfect matching?

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 2 / 17

A Monte Carlo Algorithm for Determinant Identity

Matrices and Determinants

Given a bipartite graph G , consider the n × n matrix AG whose
(i , j)-th element is a variable xij , if (ui , vj) ∈ E , and zero otherwise.

The determinant of AG is defined as

det(AG) =
∑

π

σ(π)
n
∏

i=1

AG
i ,π(i),

π ranges over all permutations of n elements;
σ(π) is 1 if π is composed of an even number of transpositions, and
−1 otherwise.

Note the following:

The only nonzero terms in this sum are those that correspond to
perfect matchings π.
Since all variables appear once, all of these terms are different
monomials, and hence they do not cancel in the end result.

So, G has a perfect matching iff det(AG) is not identically zero.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 3 / 17

A Monte Carlo Algorithm for Determinant Identity

Gaussian Elimination

The simplest and oldest method to compute determinants is Gaussian
elimination.




1 3 2
1 7 −2

−1 3 −2





r2←r2−r1−→
r3←r3+r1





1 3 2
0 4 −4
0 6 0





r3←r3−
3
2
r2

−→





1 3 2
0 4 −4
0 0 6





It follows that det(A) = 1 · 4 · 6 = 24.

For numerical matrices, this algorithm runs in polynomial-time.

Unfortunately, for symbolic matrices, its worst-case running time
becomes exponential.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 4 / 17

A Monte Carlo Algorithm for Determinant Identity

The Symbolic Identity Problem

But we are not interested in actually evaluating the symbolic
determinant!

We just need to tell whether it is identically zero or not.

So we can pursue the following idea:

We substitute arbitrary integers for the variables.
Then we obtain a numerical matrix, whose determinant we can
calculate in polynomial time by Gaussian elimination.

If this determinant is not zero, then the symbolic determinant cannot
be identically zero!
But the numerical determinant may be zero, although the symbolic one
was not.
This happens if we stumble upon one of the roots of the determinant
(seen as a polynomial).

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 5 / 17

A Monte Carlo Algorithm for Determinant Identity

How Unlucky Can We Be?

Lemma

Let p(x1, . . . , xm) 6≡ 0 be a polynomial in m variables each of degree at
most d in it, and let M > 0 be an integer. Then the number of m-tuples
(x1, . . . , xm) ∈ {0, 1, . . . ,M − 1}m such that p(x1, . . . , xm) = 0 is at most
mdMm−1.

The proof is by induction on m, the number of variables.

When m = 1 the lemma says that no polynomial of degree ≤ d can
have more than d roots.

Suppose the result is true for m − 1 variables.

Write p as a polynomial in xm, whose coefficients are polynomials in
x1, . . . , xm−1.

E.g.,
x31x

2
2 + x31 x

3
3 + x21x2x

2
3 + x21x2x3 + x1x

2
2 x3 + x1x

3
3

= (x31 + x1)x
3
3 + (x21 x2)x

2
3 + (x21 x2 + x1x

2
2)x3 + (x31 x

2
2).

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 6 / 17

A Monte Carlo Algorithm for Determinant Identity

The Induction Step

If this polynomial evaluated at some integer point is zero, then

either the highest-degree coefficient of xm in p is zero,...
By induction this can occur for at most (m − 1)dMm−2 values of
x1, . . . , xm−1.
For each such value, p will be zero for at most M values of xm.
Hence, for at most (m − 1)dMm−1 values of x1, . . . , xm.
... or it is not.
We have a polynomial of degree ≤ d in xm which can have at most d
roots for each combination of values of x1, . . . , xm−1.
So we get at most dMm−1 new roots of p.

Adding these, we upper bound the total number of roots of p:

(m − 1)dMm−1 + dMm−1 = mdMm−1.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 7 / 17

A Monte Carlo Algorithm for Determinant Identity

A Monte Carlo Algorithm

The Lemma alllows the following randomized algorithm for deciding if
a graph G has a perfect matching.

We denote by AG (x1, . . . , xm) the matrix AG with its m variables.

det(AG (x1, . . . , xm)) has degree at most one in each of the variables.
Choose m random integers i1, . . . , im between 0 and M = 2m− 1.
Compute the determinant det(AG (i1, . . . , im)) by Gaussian elimination.
If det(AG (i1, . . . , im)) 6= 0 then “G has a perfect matching”;
If det(AG (i1, . . . , im)) = 0 then “G probably has no perfect matching”.

This is a polynomial Monte Carlo algorithm:
If the algorithm finds that a matching exists, its decision is reliable.
But if the algorithm answers “probably no matching”, then there is a
possibility of a false negative.

If G has a matching, the probability of a false negative answer is

P(hitting a 0) ≤
m(2m)m−1

(2m)m
=

m

2m
=

1

2
.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 8 / 17

A Monte Carlo Algorithm for Determinant Identity

Amplification

By taking M much larger than md we could reduce the probability of
a false negative answer as much as desired (at the expense of
applying Gaussian elimination to a matrix with larger numbers).

However, there is a much more widely applicable (and more
appealing) way of reducing the chance of false negative answers:

Perform many independent experiments.

We repeat k times the evaluation of the determinant of a symbolic
matrix, each time with independently chosen random integer values
for the variables in the range 0, . . . , 2m − 1.

If the answer always comes out zero, then our confidence on the
outcome that G has no perfect matching is boosted to 1− (12)

k .
If the answer is different from zero even once, then we know that a
perfect matching exists.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 9 / 17

A Random Walk Algorithm for Satisfiability

The Satisfiability Problem

Let x1, . . . , xn be Boolean variables.

A literal is one of x1, . . . , xn or ¬x1, . . . ,¬xn.

A clause c is a disjunction c = ℓ1 ∨ · · · ∨ ℓk , where ℓi is a literal.

A CNF formula is a formula ϕ =
∧m

i=1 ci , where ci is a clause, say

ci = ℓi1 ∨ · · · ∨ ℓiki .

ϕ is satisfiable if there exists an assignment τ : {x1, . . . , xn} → {0, 1}
of Boolean values to its variables, such that τ(ϕ) = 1.

SAT: Given a CNF formula ϕ, is ϕ satisfiable?

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 10 / 17

A Random Walk Algorithm for Satisfiability

Random Walk Algorithm for Satisfiability

Consider the following randomized algorithm for SAT:

Start with any truth assignment τ ;
Repeat the following r times:

If there is no unsatisfied clause, reply “formula is satisfiable”;
else

take any unsatisfied clause (all of its literals are false under τ);
Pick any of these literals at random and flip it, updating τ .

Reply “formula is probably unsatisfiable”.

We will fix the value of parameter r later.

We call this the random walk algorithm.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 11 / 17

A Random Walk Algorithm for Satisfiability

Performance of the Algorithm

If the given expression is unsatisfiable, then our algorithm is
“correct”:

It concludes that the expression is “probably unsatisfiable”.

But if the expression is satisfiable, we may have a false negative.

If we allow exponentially many repetitions we will eventually find a
satisfying assignment with very high probability.

If r is only allowed to be polynomial in the number of Boolean
variables, there are simple satisfiable instances of 3-SAT (3 literals
allowed per clause) for which the “random walk algorithm” performs
badly.

When applied to 2-SAT (2 literals allowed per clause) the random
walk algorithm performs quite decently.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 12 / 17

A Random Walk Algorithm for Satisfiability

Performance for 2-SAT

Theorem

Suppose that the random walk algorithm with r = 2n2 is applied to any
satisfiable instance of 2-SAT with n variables. Then the probability that a
satisfying truth assignment will be discovered is at least 1

2 .

Let τ̂ be a truth assignment that satisfies the given 2-SAT instance.

Let t(i) denote the expected number of repetitions of the flipping
step until a satisfying truth assignment is found, assuming that our
starting truth assignment τ differs from τ̂ in exactly i values.

We know that t(0) = 0.

Also we need not flip when we are at another satisfying assignment.

Otherwise, we must flip at least once.

When we flip, we choose among the two literals of a clause.

At least one of these two literals is true under τ̂ .

Thus, when flipping, we have at least 1
2 chance of moving closer to τ̂ .

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 13 / 17

A Random Walk Algorithm for Satisfiability

Writing an Inequality

For 0 < i < n we can write the inequality:

t(i) ≤
1

2
(t(i − 1) + t(i + 1)) + 1,

where the added unit stands for the flip just made.

It is an inequality because the situation could be brighter:

Perhaps the current τ also satisfies the expression;
Perhaps it differs from τ̂ in both literals, not just the guaranteed one.
Also t(n) ≤ t(n − 1) + 1, since at i = n we can only decrease i .

Consider the situation, where the relation holds as an equation.

This way we give up the occasional chance of stumbling upon another
satisfying truth assignment, or a clause where τ and τ̂ differ in both
literals.
It is clear that this can only increase the t(i)’s.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 14 / 17

A Random Walk Algorithm for Satisfiability

Dealing with an Equation

We define the function x(i) to obey

x(0) = 0;
x(n) = x(n − 1) + 1;
x(i) = 1

2(x(i − 1) + x(i + 1)) + 1.

The x(i)’s are easy to calculate and x(i) ≥ t(i) for all i .

We have a “one-dimensional random walk with a reflecting and an
absorbing barrier” or a “gambler’s ruin against the sheriff”.

If we add all equations on the x(i)’s together, we get x(1) = 2n− 1;
Then solving the x(1)-equation for x(2) we get x(2) = 4n − 4;
Continuing like this x(i) = 2in− i2.

As expected, the worst starting i is n, with x(n) = n2.

We have thus proved that the expected number of repetitions needed
to discover a satisfying truth assignment is t(i) ≤ x(i) ≤ x(n) = n2.

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 15 / 17

A Random Walk Algorithm for Satisfiability

Bounding the Probability of Failure

No matter where we start, our expected number of steps is ≤ n2.

The following lemma, with k = 2, completes the proof.

Lemma

If x is a random variable taking nonnegative integer values, then for any
k > 0,

P [x > k · E (x)] <
1

k
.

Let pi be the probability that x = i .

E (x) =
∑

i

ipi =
∑

i≤kE(x)

ipi +
∑

i>kE(x)

ipi > kE (x)P[x > kE (x)].

Hence, the random walk algorithm with r = 2n2 is a polynomial
Monte Carlo algorithm for 2-SAT:

There there are no false positives;
The probability of a false negative is less than 1

2 .

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 16 / 17

A Random Walk Algorithm for Satisfiability

Thank you!

In closing...

Thank you for your Attention!!

George Voutsadakis (LSSU) Two Randomized Algorithms Sault Sainte Marie, 2022 17 / 17

	A Monte Carlo Algorithm for Determinant Identity
	A Random Walk Algorithm for Satisfiability

